3-4 Perpendicular Lines

Warm Up

Solve each inequality.

1. $x-5<8 \quad x<13$
2. $3 x+1<x \quad x>-\frac{1}{2}$

Solve each equation.
3. $5 y=90 \quad y=18$
4. $5 x+15=90 \quad x=15$

Solve the systems of equations.
5. $\left\{\begin{array}{l}6 y=90 \\ 8 y-3 x=90\end{array} \quad x=10, y=15\right.$

3-4 Perpendicular Lines

Objective

Prove and apply theorems about perpendicular lines.

The perpendicular bisector of a segment is a line perpendicular to a segment at the segment's midpoint.

3-4 Perpendicular Lines

The shortest segment from a point to a line is perpendicular to the line. Therefore the distance from a point to a line is the length of the perpendicular segment from the point to the line.

$\overline{A E}$ is shorter than $\overline{A C}$.

FI is the shortest.

3-4 Perpendicular Lines

Example 1: Distance From a Point to a Line
A. Name the shortest segment from point \boldsymbol{A} to $\overleftrightarrow{B C}$. $\overline{A P}$ is perpendicular to $B C$ so, the shortest segment from A to $B C$ is $\overline{A P}$.

B. Write and solve an inequality for \boldsymbol{x}.
$A C>A P \quad \overline{A P}$ is the shortest segment.
$x-8>12$ Substitute $x-8$ for $A C$ and 12 for AP.
$+8+8$ Add 8 to both sides of the inequality. $x>20$

3-4 Perpendicular Lines

Check It Out! Example 1

A. Name the shortest segment from point \boldsymbol{A} to $\overleftrightarrow{\mathbf{B C}}$. $\overline{A B}$ is the perpendicular segment to $\overleftrightarrow{B C}$, so $\overline{A B}$ is the shortest segment from A to $B C$.

B. Write and solve an inequality for x.
$A C>A B \quad \overline{A B}$ is the shortest segment.
$12>x-5$ Substitute 12 for $A C$ and $x-5$ for $A B$.
$+5+5$ Add 5 to both sides of the inequality.
$17>x$

3-4 Perpendicular Lines

Theorems

	THEOREM	HYpothesis	conclusion
3-4-1	If two intersecting lines form alinear pair of congruent angles, then the lines are perpendicular. (2 intersecting lines form lin. pair of $\cong \triangleq \rightarrow$ lines \perp.)		$\ell \perp m$

3-4 Perpendicular Lines

HYPOTHESIS

Transversal Theorem In a plane, if a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other line.

A swimmer who gets caught in a rip current should swim in a direction parallel to the shore. This theorem explains why the swimmer will be perpendicular to the current as well.

3-4 Perpendicular Lines

A carpenter's square forms a right angle. A carpenter places the square so that one side is
 parallel to an edge of a board, and then draws a line along the other side of the square. Then he slides the square to the right and draws a second line. The two lines are parallel because they are both perpendicular to the edge thus explaining this theorem.

3-4 Perpendicular Lines

Lesson Quiz: Part I

1. Write and solve an inequality for x.

2. Solve to find x and y in the diagram.

