30°

45°

25

5.2 Practice A

Name

Bisectors of Triangles

Fill in the blanks to complete each definition or theorem.

- 1. The circumcenter of a triangle is equidistant from the _____ of the triangle.
- 2. When three or more lines ______ at one point, the lines are said to be concurrent.
- 3. The incenter of a triangle is the point where the three bisectors of a triangle are concurrent.
- 4. The ______ of a triangle is equidistant from the sides of the triangle.
- 5. The ______ of a triangle is the point where the three perpendicular bisectors of a triangle are concurrent.

Use the figure for Exercises 6-8. DG, EG, and FG are perpendicular bisectors of $\triangle ABC$. Find each length.

6. *AG*_____ 7. DB 9. *GB* 8. AF _____

Use the figure for Exercises 10–13. \overline{HK} and \overline{JK} are angle bisectors of $\triangle HIJ$. Find each measure.

- 10. the distance from K to \overline{JI} 11. m∠*HJK*_____
- 12. m∠*JHK*
- 13. m∠*HJI*

Millsville is a town with three large streets that form a triangle. The town council wants to place a fire station so that it is the same distance from each of the three streets.

- 14. Why would the town council want the fire station equidistant from the large streets?
- 15. Tell whether the circumcenter or the incenter of the triangle should be the location of the fire station.
- 16. Bisect each angle of the figure to find the location of the firehouse. You may use a compass and straightedge or a protractor.

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

Name	Date	Class	
Use the figure for Exercises 1 and 2 perpendicular bisectors of the sides	. <i>SV, TV,</i> and <i>UV</i> are s of ∆ <i>PQR</i> . Find each leng	th.	17 25 25
17. <i>RV</i>	18. <i>TR</i>		7.7
19. <i>P</i> Q	20. VQ		T 24 Q
Use the figure for Exercises 7 and 8 bisectors of $\triangle GHI$. Find each measu	. <i>GJ</i> and <i>IJ</i> are angle re.	G 23° 64	4.3
21. the distance from J to \overline{GH}		K REJU	
22 m / IGK		1 <u>V 02.1</u>	26 1

22. m∠*JGK*_____

Each figure shows a triangle with its three angle bisectors intersecting at point P.

23) Find PX if PW = 4.

25) Find PH if PG = 7.

24) PR = 9. Find PQ.

H

26) Find PE if PF = 6.

